Skip to content

pydantic_ai.models.openai

Setup

For details on how to set up authentication with this model, see model configuration for OpenAI.

OpenAIModelName module-attribute

OpenAIModelName = str | AllModels

Possible OpenAI model names.

Since OpenAI supports a variety of date-stamped models, we explicitly list the latest models but allow any name in the type hints. See the OpenAI docs for a full list.

Using this more broad type for the model name instead of the ChatModel definition allows this model to be used more easily with other model types (ie, Ollama, Deepseek).

MCP_SERVER_TOOL_CONNECTOR_URI_SCHEME module-attribute

MCP_SERVER_TOOL_CONNECTOR_URI_SCHEME: Literal[
    "x-openai-connector"
] = "x-openai-connector"

Prefix for OpenAI connector IDs. OpenAI supports either a URL or a connector ID when passing MCP configuration to a model, by using that prefix like x-openai-connector:<connector-id> in a URL, you can pass a connector ID to a model.

OpenAIChatModelSettings

Bases: ModelSettings

Settings used for an OpenAI model request.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
class OpenAIChatModelSettings(ModelSettings, total=False):
    """Settings used for an OpenAI model request."""

    # ALL FIELDS MUST BE `openai_` PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.

    openai_reasoning_effort: ReasoningEffort
    """Constrains effort on reasoning for [reasoning models](https://platform.openai.com/docs/guides/reasoning).

    Currently supported values are `low`, `medium`, and `high`. Reducing reasoning effort can
    result in faster responses and fewer tokens used on reasoning in a response.
    """

    openai_logprobs: bool
    """Include log probabilities in the response.

    For Chat models, these will be included in `ModelResponse.provider_details['logprobs']`.
    For Responses models, these will be included in the response output parts `TextPart.provider_details['logprobs']`.
    """

    openai_top_logprobs: int
    """Include log probabilities of the top n tokens in the response."""

    openai_user: str
    """A unique identifier representing the end-user, which can help OpenAI monitor and detect abuse.

    See [OpenAI's safety best practices](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids) for more details.
    """

    openai_service_tier: Literal['auto', 'default', 'flex', 'priority']
    """The service tier to use for the model request.

    Currently supported values are `auto`, `default`, `flex`, and `priority`.
    For more information, see [OpenAI's service tiers documentation](https://platform.openai.com/docs/api-reference/chat/object#chat/object-service_tier).
    """

    openai_prediction: ChatCompletionPredictionContentParam
    """Enables [predictive outputs](https://platform.openai.com/docs/guides/predicted-outputs).

    This feature is currently only supported for some OpenAI models.
    """

    openai_prompt_cache_key: str
    """Used by OpenAI to cache responses for similar requests to optimize your cache hit rates.

    See the [OpenAI Prompt Caching documentation](https://platform.openai.com/docs/guides/prompt-caching#how-it-works) for more information.
    """

    openai_prompt_cache_retention: Literal['in-memory', '24h']
    """The retention policy for the prompt cache. Set to 24h to enable extended prompt caching, which keeps cached prefixes active for longer, up to a maximum of 24 hours.

    See the [OpenAI Prompt Caching documentation](https://platform.openai.com/docs/guides/prompt-caching#how-it-works) for more information.
    """

openai_reasoning_effort instance-attribute

openai_reasoning_effort: ReasoningEffort

Constrains effort on reasoning for reasoning models.

Currently supported values are low, medium, and high. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response.

openai_logprobs instance-attribute

openai_logprobs: bool

Include log probabilities in the response.

For Chat models, these will be included in ModelResponse.provider_details['logprobs']. For Responses models, these will be included in the response output parts TextPart.provider_details['logprobs'].

openai_top_logprobs instance-attribute

openai_top_logprobs: int

Include log probabilities of the top n tokens in the response.

openai_user instance-attribute

openai_user: str

A unique identifier representing the end-user, which can help OpenAI monitor and detect abuse.

See OpenAI's safety best practices for more details.

openai_service_tier instance-attribute

openai_service_tier: Literal[
    "auto", "default", "flex", "priority"
]

The service tier to use for the model request.

Currently supported values are auto, default, flex, and priority. For more information, see OpenAI's service tiers documentation.

openai_prediction instance-attribute

openai_prediction: ChatCompletionPredictionContentParam

Enables predictive outputs.

This feature is currently only supported for some OpenAI models.

openai_prompt_cache_key instance-attribute

openai_prompt_cache_key: str

Used by OpenAI to cache responses for similar requests to optimize your cache hit rates.

See the OpenAI Prompt Caching documentation for more information.

openai_prompt_cache_retention instance-attribute

openai_prompt_cache_retention: Literal['in-memory', '24h']

The retention policy for the prompt cache. Set to 24h to enable extended prompt caching, which keeps cached prefixes active for longer, up to a maximum of 24 hours.

See the OpenAI Prompt Caching documentation for more information.

OpenAIModelSettings deprecated

Bases: OpenAIChatModelSettings

Deprecated

Use OpenAIChatModelSettings instead.

Deprecated alias for OpenAIChatModelSettings.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
233
234
235
@deprecated('Use `OpenAIChatModelSettings` instead.')
class OpenAIModelSettings(OpenAIChatModelSettings, total=False):
    """Deprecated alias for `OpenAIChatModelSettings`."""

OpenAIResponsesModelSettings

Bases: OpenAIChatModelSettings

Settings used for an OpenAI Responses model request.

ALL FIELDS MUST BE openai_ PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
class OpenAIResponsesModelSettings(OpenAIChatModelSettings, total=False):
    """Settings used for an OpenAI Responses model request.

    ALL FIELDS MUST BE `openai_` PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.
    """

    openai_builtin_tools: Sequence[FileSearchToolParam | WebSearchToolParam | ComputerToolParam]
    """The provided OpenAI built-in tools to use.

    See [OpenAI's built-in tools](https://platform.openai.com/docs/guides/tools?api-mode=responses) for more details.
    """

    openai_reasoning_generate_summary: Literal['detailed', 'concise']
    """Deprecated alias for `openai_reasoning_summary`."""

    openai_reasoning_summary: Literal['detailed', 'concise']
    """A summary of the reasoning performed by the model.

    This can be useful for debugging and understanding the model's reasoning process.
    One of `concise` or `detailed`.

    Check the [OpenAI Reasoning documentation](https://platform.openai.com/docs/guides/reasoning?api-mode=responses#reasoning-summaries)
    for more details.
    """

    openai_send_reasoning_ids: bool
    """Whether to send the unique IDs of reasoning, text, and function call parts from the message history to the model. Enabled by default for reasoning models.

    This can result in errors like `"Item 'rs_123' of type 'reasoning' was provided without its required following item."`
    if the message history you're sending does not match exactly what was received from the Responses API in a previous response,
    for example if you're using a [history processor](../../message-history.md#processing-message-history).
    In that case, you'll want to disable this.
    """

    openai_truncation: Literal['disabled', 'auto']
    """The truncation strategy to use for the model response.

    It can be either:
    - `disabled` (default): If a model response will exceed the context window size for a model, the
        request will fail with a 400 error.
    - `auto`: If the context of this response and previous ones exceeds the model's context window size,
        the model will truncate the response to fit the context window by dropping input items in the
        middle of the conversation.
    """

    openai_text_verbosity: Literal['low', 'medium', 'high']
    """Constrains the verbosity of the model's text response.

    Lower values will result in more concise responses, while higher values will
    result in more verbose responses. Currently supported values are `low`,
    `medium`, and `high`.
    """

    openai_previous_response_id: Literal['auto'] | str
    """The ID of a previous response from the model to use as the starting point for a continued conversation.

    When set to `'auto'`, the request automatically uses the most recent
    `provider_response_id` from the message history and omits earlier messages.

    This enables the model to use server-side conversation state and faithfully reference previous reasoning.
    See the [OpenAI Responses API documentation](https://platform.openai.com/docs/guides/reasoning#keeping-reasoning-items-in-context)
    for more information.
    """

    openai_include_code_execution_outputs: bool
    """Whether to include the code execution results in the response.

    Corresponds to the `code_interpreter_call.outputs` value of the `include` parameter in the Responses API.
    """

    openai_include_web_search_sources: bool
    """Whether to include the web search results in the response.

    Corresponds to the `web_search_call.action.sources` value of the `include` parameter in the Responses API.
    """

openai_builtin_tools instance-attribute

openai_builtin_tools: Sequence[
    FileSearchToolParam
    | WebSearchToolParam
    | ComputerToolParam
]

The provided OpenAI built-in tools to use.

See OpenAI's built-in tools for more details.

openai_reasoning_generate_summary instance-attribute

openai_reasoning_generate_summary: Literal[
    "detailed", "concise"
]

Deprecated alias for openai_reasoning_summary.

openai_reasoning_summary instance-attribute

openai_reasoning_summary: Literal['detailed', 'concise']

A summary of the reasoning performed by the model.

This can be useful for debugging and understanding the model's reasoning process. One of concise or detailed.

Check the OpenAI Reasoning documentation for more details.

openai_send_reasoning_ids instance-attribute

openai_send_reasoning_ids: bool

Whether to send the unique IDs of reasoning, text, and function call parts from the message history to the model. Enabled by default for reasoning models.

This can result in errors like "Item 'rs_123' of type 'reasoning' was provided without its required following item." if the message history you're sending does not match exactly what was received from the Responses API in a previous response, for example if you're using a history processor. In that case, you'll want to disable this.

openai_truncation instance-attribute

openai_truncation: Literal['disabled', 'auto']

The truncation strategy to use for the model response.

It can be either: - disabled (default): If a model response will exceed the context window size for a model, the request will fail with a 400 error. - auto: If the context of this response and previous ones exceeds the model's context window size, the model will truncate the response to fit the context window by dropping input items in the middle of the conversation.

openai_text_verbosity instance-attribute

openai_text_verbosity: Literal['low', 'medium', 'high']

Constrains the verbosity of the model's text response.

Lower values will result in more concise responses, while higher values will result in more verbose responses. Currently supported values are low, medium, and high.

openai_previous_response_id instance-attribute

openai_previous_response_id: Literal['auto'] | str

The ID of a previous response from the model to use as the starting point for a continued conversation.

When set to 'auto', the request automatically uses the most recent provider_response_id from the message history and omits earlier messages.

This enables the model to use server-side conversation state and faithfully reference previous reasoning. See the OpenAI Responses API documentation for more information.

openai_include_code_execution_outputs instance-attribute

openai_include_code_execution_outputs: bool

Whether to include the code execution results in the response.

Corresponds to the code_interpreter_call.outputs value of the include parameter in the Responses API.

openai_include_web_search_sources instance-attribute

openai_include_web_search_sources: bool

Whether to include the web search results in the response.

Corresponds to the web_search_call.action.sources value of the include parameter in the Responses API.

OpenAIChatModel dataclass

Bases: Model

A model that uses the OpenAI API.

Internally, this uses the OpenAI Python client to interact with the API.

Apart from __init__, all methods are private or match those of the base class.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
@dataclass(init=False)
class OpenAIChatModel(Model):
    """A model that uses the OpenAI API.

    Internally, this uses the [OpenAI Python client](https://github.com/openai/openai-python) to interact with the API.

    Apart from `__init__`, all methods are private or match those of the base class.
    """

    client: AsyncOpenAI = field(repr=False)

    _model_name: OpenAIModelName = field(repr=False)
    _provider: Provider[AsyncOpenAI] = field(repr=False)

    @overload
    def __init__(
        self,
        model_name: OpenAIModelName,
        *,
        provider: Literal[
            'azure',
            'deepseek',
            'cerebras',
            'fireworks',
            'github',
            'grok',
            'heroku',
            'moonshotai',
            'ollama',
            'openai',
            'openai-chat',
            'openrouter',
            'together',
            'vercel',
            'litellm',
            'nebius',
            'ovhcloud',
            'gateway',
        ]
        | Provider[AsyncOpenAI] = 'openai',
        profile: ModelProfileSpec | None = None,
        settings: ModelSettings | None = None,
    ) -> None: ...

    @deprecated('Set the `system_prompt_role` in the `OpenAIModelProfile` instead.')
    @overload
    def __init__(
        self,
        model_name: OpenAIModelName,
        *,
        provider: Literal[
            'azure',
            'deepseek',
            'cerebras',
            'fireworks',
            'github',
            'grok',
            'heroku',
            'moonshotai',
            'ollama',
            'openai',
            'openai-chat',
            'openrouter',
            'together',
            'vercel',
            'litellm',
            'nebius',
            'ovhcloud',
            'gateway',
        ]
        | Provider[AsyncOpenAI] = 'openai',
        profile: ModelProfileSpec | None = None,
        system_prompt_role: OpenAISystemPromptRole | None = None,
        settings: ModelSettings | None = None,
    ) -> None: ...

    def __init__(
        self,
        model_name: OpenAIModelName,
        *,
        provider: Literal[
            'azure',
            'deepseek',
            'cerebras',
            'fireworks',
            'github',
            'grok',
            'heroku',
            'moonshotai',
            'ollama',
            'openai',
            'openai-chat',
            'openrouter',
            'together',
            'vercel',
            'litellm',
            'nebius',
            'ovhcloud',
            'gateway',
        ]
        | Provider[AsyncOpenAI] = 'openai',
        profile: ModelProfileSpec | None = None,
        system_prompt_role: OpenAISystemPromptRole | None = None,
        settings: ModelSettings | None = None,
    ):
        """Initialize an OpenAI model.

        Args:
            model_name: The name of the OpenAI model to use. List of model names available
                [here](https://github.com/openai/openai-python/blob/v1.54.3/src/openai/types/chat_model.py#L7)
                (Unfortunately, despite being ask to do so, OpenAI do not provide `.inv` files for their API).
            provider: The provider to use. Defaults to `'openai'`.
            profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
            system_prompt_role: The role to use for the system prompt message. If not provided, defaults to `'system'`.
                In the future, this may be inferred from the model name.
            settings: Default model settings for this model instance.
        """
        self._model_name = model_name

        if isinstance(provider, str):
            provider = infer_provider('gateway/openai' if provider == 'gateway' else provider)
        self._provider = provider
        self.client = provider.client

        super().__init__(settings=settings, profile=profile or provider.model_profile)

        if system_prompt_role is not None:
            self.profile = OpenAIModelProfile(openai_system_prompt_role=system_prompt_role).update(self.profile)

    @property
    def base_url(self) -> str:
        return str(self.client.base_url)

    @property
    def model_name(self) -> OpenAIModelName:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The model provider."""
        return self._provider.name

    @property
    @deprecated('Set the `system_prompt_role` in the `OpenAIModelProfile` instead.')
    def system_prompt_role(self) -> OpenAISystemPromptRole | None:
        return OpenAIModelProfile.from_profile(self.profile).openai_system_prompt_role

    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ModelResponse:
        check_allow_model_requests()
        model_settings, model_request_parameters = self.prepare_request(
            model_settings,
            model_request_parameters,
        )
        response = await self._completions_create(
            messages, False, cast(OpenAIChatModelSettings, model_settings or {}), model_request_parameters
        )
        model_response = self._process_response(response)
        return model_response

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
        run_context: RunContext[Any] | None = None,
    ) -> AsyncIterator[StreamedResponse]:
        check_allow_model_requests()
        model_settings, model_request_parameters = self.prepare_request(
            model_settings,
            model_request_parameters,
        )
        response = await self._completions_create(
            messages, True, cast(OpenAIChatModelSettings, model_settings or {}), model_request_parameters
        )
        async with response:
            yield await self._process_streamed_response(response, model_request_parameters)

    @overload
    async def _completions_create(
        self,
        messages: list[ModelMessage],
        stream: Literal[True],
        model_settings: OpenAIChatModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncStream[ChatCompletionChunk]: ...

    @overload
    async def _completions_create(
        self,
        messages: list[ModelMessage],
        stream: Literal[False],
        model_settings: OpenAIChatModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> chat.ChatCompletion: ...

    async def _completions_create(
        self,
        messages: list[ModelMessage],
        stream: bool,
        model_settings: OpenAIChatModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> chat.ChatCompletion | AsyncStream[ChatCompletionChunk]:
        tools = self._get_tools(model_request_parameters)
        web_search_options = self._get_web_search_options(model_request_parameters)

        if not tools:
            tool_choice: Literal['none', 'required', 'auto'] | None = None
        elif (
            not model_request_parameters.allow_text_output
            and OpenAIModelProfile.from_profile(self.profile).openai_supports_tool_choice_required
        ):
            tool_choice = 'required'
        else:
            tool_choice = 'auto'

        openai_messages = await self._map_messages(messages, model_request_parameters)

        response_format: chat.completion_create_params.ResponseFormat | None = None
        if model_request_parameters.output_mode == 'native':
            output_object = model_request_parameters.output_object
            assert output_object is not None
            response_format = self._map_json_schema(output_object)
        elif (
            model_request_parameters.output_mode == 'prompted' and self.profile.supports_json_object_output
        ):  # pragma: no branch
            response_format = {'type': 'json_object'}

        unsupported_model_settings = OpenAIModelProfile.from_profile(self.profile).openai_unsupported_model_settings
        for setting in unsupported_model_settings:
            model_settings.pop(setting, None)

        try:
            extra_headers = model_settings.get('extra_headers', {})
            extra_headers.setdefault('User-Agent', get_user_agent())
            return await self.client.chat.completions.create(
                model=self.model_name,
                messages=openai_messages,
                parallel_tool_calls=model_settings.get('parallel_tool_calls', OMIT),
                tools=tools or OMIT,
                tool_choice=tool_choice or OMIT,
                stream=stream,
                stream_options={'include_usage': True} if stream else OMIT,
                stop=model_settings.get('stop_sequences', OMIT),
                max_completion_tokens=model_settings.get('max_tokens', OMIT),
                timeout=model_settings.get('timeout', NOT_GIVEN),
                response_format=response_format or OMIT,
                seed=model_settings.get('seed', OMIT),
                reasoning_effort=model_settings.get('openai_reasoning_effort', OMIT),
                user=model_settings.get('openai_user', OMIT),
                web_search_options=web_search_options or OMIT,
                service_tier=model_settings.get('openai_service_tier', OMIT),
                prediction=model_settings.get('openai_prediction', OMIT),
                temperature=model_settings.get('temperature', OMIT),
                top_p=model_settings.get('top_p', OMIT),
                presence_penalty=model_settings.get('presence_penalty', OMIT),
                frequency_penalty=model_settings.get('frequency_penalty', OMIT),
                logit_bias=model_settings.get('logit_bias', OMIT),
                logprobs=model_settings.get('openai_logprobs', OMIT),
                top_logprobs=model_settings.get('openai_top_logprobs', OMIT),
                prompt_cache_key=model_settings.get('openai_prompt_cache_key', OMIT),
                prompt_cache_retention=model_settings.get('openai_prompt_cache_retention', OMIT),
                extra_headers=extra_headers,
                extra_body=model_settings.get('extra_body'),
            )
        except APIStatusError as e:
            if (status_code := e.status_code) >= 400:
                raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.body) from e
            raise  # pragma: lax no cover
        except APIConnectionError as e:
            raise ModelAPIError(model_name=self.model_name, message=e.message) from e

    def _validate_completion(self, response: chat.ChatCompletion) -> chat.ChatCompletion:
        """Hook that validates chat completions before processing.

        This method may be overridden by subclasses of `OpenAIChatModel` to apply custom completion validations.
        """
        return chat.ChatCompletion.model_validate(response.model_dump())

    def _process_provider_details(self, response: chat.ChatCompletion) -> dict[str, Any]:
        """Hook that response content to provider details.

        This method may be overridden by subclasses of `OpenAIChatModel` to apply custom mappings.
        """
        return _map_provider_details(response.choices[0])

    def _process_response(self, response: chat.ChatCompletion | str) -> ModelResponse:
        """Process a non-streamed response, and prepare a message to return."""
        # Although the OpenAI SDK claims to return a Pydantic model (`ChatCompletion`) from the chat completions function:
        # * it hasn't actually performed validation (presumably they're creating the model with `model_construct` or something?!)
        # * if the endpoint returns plain text, the return type is a string
        # Thus we validate it fully here.
        if not isinstance(response, chat.ChatCompletion):
            raise UnexpectedModelBehavior(
                f'Invalid response from {self.system} chat completions endpoint, expected JSON data'
            )

        if response.created:
            timestamp = number_to_datetime(response.created)
        else:
            timestamp = _now_utc()
            response.created = int(timestamp.timestamp())

        # Workaround for local Ollama which sometimes returns a `None` finish reason.
        if response.choices and (choice := response.choices[0]) and choice.finish_reason is None:  # pyright: ignore[reportUnnecessaryComparison]
            choice.finish_reason = 'stop'

        try:
            response = self._validate_completion(response)
        except ValidationError as e:
            raise UnexpectedModelBehavior(f'Invalid response from {self.system} chat completions endpoint: {e}') from e

        choice = response.choices[0]
        items: list[ModelResponsePart] = []

        if thinking_parts := self._process_thinking(choice.message):
            items.extend(thinking_parts)

        if choice.message.content:
            items.extend(
                (replace(part, id='content', provider_name=self.system) if isinstance(part, ThinkingPart) else part)
                for part in split_content_into_text_and_thinking(choice.message.content, self.profile.thinking_tags)
            )
        if choice.message.tool_calls is not None:
            for c in choice.message.tool_calls:
                if isinstance(c, ChatCompletionMessageFunctionToolCall):
                    part = ToolCallPart(c.function.name, c.function.arguments, tool_call_id=c.id)
                elif isinstance(c, ChatCompletionMessageCustomToolCall):  # pragma: no cover
                    # NOTE: Custom tool calls are not supported.
                    # See <https://github.com/pydantic/pydantic-ai/issues/2513> for more details.
                    raise RuntimeError('Custom tool calls are not supported')
                else:
                    assert_never(c)
                part.tool_call_id = _guard_tool_call_id(part)
                items.append(part)

        return ModelResponse(
            parts=items,
            usage=self._map_usage(response),
            model_name=response.model,
            timestamp=timestamp,
            provider_details=self._process_provider_details(response),
            provider_response_id=response.id,
            provider_name=self._provider.name,
            provider_url=self._provider.base_url,
            finish_reason=self._map_finish_reason(choice.finish_reason),
        )

    def _process_thinking(self, message: chat.ChatCompletionMessage) -> list[ThinkingPart] | None:
        """Hook that maps reasoning tokens to thinking parts.

        This method may be overridden by subclasses of `OpenAIChatModel` to apply custom mappings.
        """
        profile = OpenAIModelProfile.from_profile(self.profile)
        custom_field = profile.openai_chat_thinking_field
        items: list[ThinkingPart] = []

        # Prefer the configured custom reasoning field, if present in profile.
        # Fall back to built-in fields if no custom field result was found.

        # The `reasoning_content` field is typically present in DeepSeek and Moonshot models.
        # https://api-docs.deepseek.com/guides/reasoning_model

        # The `reasoning` field is typically present in gpt-oss via Ollama and OpenRouter.
        # - https://cookbook.openai.com/articles/gpt-oss/handle-raw-cot#chat-completions-api
        # - https://openrouter.ai/docs/use-cases/reasoning-tokens#basic-usage-with-reasoning-tokens
        for field_name in (custom_field, 'reasoning', 'reasoning_content'):
            if not field_name:
                continue
            reasoning: str | None = getattr(message, field_name, None)
            if reasoning:  # pragma: no branch
                items.append(ThinkingPart(id=field_name, content=reasoning, provider_name=self.system))
                return items

        return items or None

    async def _process_streamed_response(
        self, response: AsyncStream[ChatCompletionChunk], model_request_parameters: ModelRequestParameters
    ) -> OpenAIStreamedResponse:
        """Process a streamed response, and prepare a streaming response to return."""
        peekable_response = _utils.PeekableAsyncStream(response)
        first_chunk = await peekable_response.peek()
        if isinstance(first_chunk, _utils.Unset):
            raise UnexpectedModelBehavior(  # pragma: no cover
                'Streamed response ended without content or tool calls'
            )

        # When using Azure OpenAI and a content filter is enabled, the first chunk will contain a `''` model name,
        # so we set it from a later chunk in `OpenAIChatStreamedResponse`.
        model_name = first_chunk.model or self.model_name

        return self._streamed_response_cls(
            model_request_parameters=model_request_parameters,
            _model_name=model_name,
            _model_profile=self.profile,
            _response=peekable_response,
            _timestamp=number_to_datetime(first_chunk.created),
            _provider_name=self._provider.name,
            _provider_url=self._provider.base_url,
        )

    @property
    def _streamed_response_cls(self) -> type[OpenAIStreamedResponse]:
        """Returns the `StreamedResponse` type that will be used for streamed responses.

        This method may be overridden by subclasses of `OpenAIChatModel` to provide their own `StreamedResponse` type.
        """
        return OpenAIStreamedResponse

    def _map_usage(self, response: chat.ChatCompletion) -> usage.RequestUsage:
        return _map_usage(response, self._provider.name, self._provider.base_url, self.model_name)

    def _get_tools(self, model_request_parameters: ModelRequestParameters) -> list[chat.ChatCompletionToolParam]:
        return [self._map_tool_definition(r) for r in model_request_parameters.tool_defs.values()]

    def _get_web_search_options(self, model_request_parameters: ModelRequestParameters) -> WebSearchOptions | None:
        for tool in model_request_parameters.builtin_tools:
            if isinstance(tool, WebSearchTool):  # pragma: no branch
                if not OpenAIModelProfile.from_profile(self.profile).openai_chat_supports_web_search:
                    raise UserError(
                        f'WebSearchTool is not supported with `OpenAIChatModel` and model {self.model_name!r}. '
                        f'Please use `OpenAIResponsesModel` instead.'
                    )

                if tool.user_location:
                    return WebSearchOptions(
                        search_context_size=tool.search_context_size,
                        user_location=WebSearchOptionsUserLocation(
                            type='approximate',
                            approximate=WebSearchOptionsUserLocationApproximate(**tool.user_location),
                        ),
                    )
                return WebSearchOptions(search_context_size=tool.search_context_size)
            else:
                raise UserError(
                    f'`{tool.__class__.__name__}` is not supported by `OpenAIChatModel`. If it should be, please file an issue.'
                )

    @dataclass
    class _MapModelResponseContext:
        """Context object for mapping a `ModelResponse` to OpenAI chat completion parameters.

        This class is designed to be subclassed to add new fields for custom logic,
        collecting various parts of the model response (like text and tool calls)
        to form a single assistant message.
        """

        _model: OpenAIChatModel

        texts: list[str] = field(default_factory=list)
        thinkings: list[str] = field(default_factory=list)
        tool_calls: list[ChatCompletionMessageFunctionToolCallParam] = field(default_factory=list)

        def map_assistant_message(self, message: ModelResponse) -> chat.ChatCompletionAssistantMessageParam:
            for item in message.parts:
                if isinstance(item, TextPart):
                    self._map_response_text_part(item)
                elif isinstance(item, ThinkingPart):
                    self._map_response_thinking_part(item)
                elif isinstance(item, ToolCallPart):
                    self._map_response_tool_call_part(item)
                elif isinstance(item, BuiltinToolCallPart | BuiltinToolReturnPart):  # pragma: no cover
                    self._map_response_builtin_part(item)
                elif isinstance(item, FilePart):  # pragma: no cover
                    self._map_response_file_part(item)
                else:
                    assert_never(item)
            return self._into_message_param()

        def _into_message_param(self) -> chat.ChatCompletionAssistantMessageParam:
            """Converts the collected texts and tool calls into a single OpenAI `ChatCompletionAssistantMessageParam`.

            This method serves as a hook that can be overridden by subclasses
            to implement custom logic for how collected parts are transformed into the final message parameter.

            Returns:
                An OpenAI `ChatCompletionAssistantMessageParam` object representing the assistant's response.
            """
            profile = OpenAIModelProfile.from_profile(self._model.profile)
            message_param = chat.ChatCompletionAssistantMessageParam(role='assistant')
            # Note: model responses from this model should only have one text item, so the following
            # shouldn't merge multiple texts into one unless you switch models between runs:
            if profile.openai_chat_send_back_thinking_parts == 'field' and self.thinkings:
                field = profile.openai_chat_thinking_field
                if field:  # pragma: no branch (handled by profile validation)
                    message_param[field] = '\n\n'.join(self.thinkings)
            if self.texts:
                message_param['content'] = '\n\n'.join(self.texts)
            else:
                message_param['content'] = None
            if self.tool_calls:
                message_param['tool_calls'] = self.tool_calls
            return message_param

        def _map_response_text_part(self, item: TextPart) -> None:
            """Maps a `TextPart` to the response context.

            This method serves as a hook that can be overridden by subclasses
            to implement custom logic for handling text parts.
            """
            self.texts.append(item.content)

        def _map_response_thinking_part(self, item: ThinkingPart) -> None:
            """Maps a `ThinkingPart` to the response context.

            This method serves as a hook that can be overridden by subclasses
            to implement custom logic for handling thinking parts.
            """
            profile = OpenAIModelProfile.from_profile(self._model.profile)
            include_method = profile.openai_chat_send_back_thinking_parts
            if include_method == 'tags':
                start_tag, end_tag = self._model.profile.thinking_tags
                self.texts.append('\n'.join([start_tag, item.content, end_tag]))
            elif include_method == 'field':
                self.thinkings.append(item.content)

        def _map_response_tool_call_part(self, item: ToolCallPart) -> None:
            """Maps a `ToolCallPart` to the response context.

            This method serves as a hook that can be overridden by subclasses
            to implement custom logic for handling tool call parts.
            """
            self.tool_calls.append(self._model._map_tool_call(item))

        def _map_response_builtin_part(self, item: BuiltinToolCallPart | BuiltinToolReturnPart) -> None:
            """Maps a built-in tool call or return part to the response context.

            This method serves as a hook that can be overridden by subclasses
            to implement custom logic for handling built-in tool parts.
            """
            # OpenAI doesn't return built-in tool calls
            pass

        def _map_response_file_part(self, item: FilePart) -> None:
            """Maps a `FilePart` to the response context.

            This method serves as a hook that can be overridden by subclasses
            to implement custom logic for handling file parts.
            """
            # Files generated by models are not sent back to models that don't themselves generate files.
            pass

    def _map_model_response(self, message: ModelResponse) -> chat.ChatCompletionMessageParam:
        """Hook that determines how `ModelResponse` is mapped into `ChatCompletionMessageParam` objects before sending.

        Subclasses of `OpenAIChatModel` may override this method to provide their own mapping logic.
        """
        return self._MapModelResponseContext(self).map_assistant_message(message)

    def _map_finish_reason(
        self, key: Literal['stop', 'length', 'tool_calls', 'content_filter', 'function_call']
    ) -> FinishReason | None:
        """Hooks that maps a finish reason key to a [FinishReason][pydantic_ai.messages.FinishReason].

        This method may be overridden by subclasses of `OpenAIChatModel` to accommodate custom keys.
        """
        return _CHAT_FINISH_REASON_MAP.get(key)

    async def _map_messages(
        self, messages: list[ModelMessage], model_request_parameters: ModelRequestParameters
    ) -> list[chat.ChatCompletionMessageParam]:
        """Just maps a `pydantic_ai.Message` to a `openai.types.ChatCompletionMessageParam`."""
        openai_messages: list[chat.ChatCompletionMessageParam] = []
        for message in messages:
            if isinstance(message, ModelRequest):
                async for item in self._map_user_message(message):
                    openai_messages.append(item)
            elif isinstance(message, ModelResponse):
                openai_messages.append(self._map_model_response(message))
            else:
                assert_never(message)
        if instructions := self._get_instructions(messages, model_request_parameters):
            openai_messages.insert(0, chat.ChatCompletionSystemMessageParam(content=instructions, role='system'))
        return openai_messages

    @staticmethod
    def _map_tool_call(t: ToolCallPart) -> ChatCompletionMessageFunctionToolCallParam:
        return ChatCompletionMessageFunctionToolCallParam(
            id=_guard_tool_call_id(t=t),
            type='function',
            function={'name': t.tool_name, 'arguments': t.args_as_json_str()},
        )

    def _map_json_schema(self, o: OutputObjectDefinition) -> chat.completion_create_params.ResponseFormat:
        response_format_param: chat.completion_create_params.ResponseFormatJSONSchema = {  # pyright: ignore[reportPrivateImportUsage]
            'type': 'json_schema',
            'json_schema': {'name': o.name or DEFAULT_OUTPUT_TOOL_NAME, 'schema': o.json_schema},
        }
        if o.description:
            response_format_param['json_schema']['description'] = o.description
        if OpenAIModelProfile.from_profile(self.profile).openai_supports_strict_tool_definition:  # pragma: no branch
            response_format_param['json_schema']['strict'] = o.strict
        return response_format_param

    def _map_tool_definition(self, f: ToolDefinition) -> chat.ChatCompletionToolParam:
        tool_param: chat.ChatCompletionToolParam = {
            'type': 'function',
            'function': {
                'name': f.name,
                'description': f.description or '',
                'parameters': f.parameters_json_schema,
            },
        }
        if f.strict and OpenAIModelProfile.from_profile(self.profile).openai_supports_strict_tool_definition:
            tool_param['function']['strict'] = f.strict
        return tool_param

    async def _map_user_message(self, message: ModelRequest) -> AsyncIterable[chat.ChatCompletionMessageParam]:
        for part in message.parts:
            if isinstance(part, SystemPromptPart):
                system_prompt_role = OpenAIModelProfile.from_profile(self.profile).openai_system_prompt_role
                if system_prompt_role == 'developer':
                    yield chat.ChatCompletionDeveloperMessageParam(role='developer', content=part.content)
                elif system_prompt_role == 'user':
                    yield chat.ChatCompletionUserMessageParam(role='user', content=part.content)
                else:
                    yield chat.ChatCompletionSystemMessageParam(role='system', content=part.content)
            elif isinstance(part, UserPromptPart):
                yield await self._map_user_prompt(part)
            elif isinstance(part, ToolReturnPart):
                yield chat.ChatCompletionToolMessageParam(
                    role='tool',
                    tool_call_id=_guard_tool_call_id(t=part),
                    content=part.model_response_str(),
                )
            elif isinstance(part, RetryPromptPart):
                if part.tool_name is None:
                    yield chat.ChatCompletionUserMessageParam(role='user', content=part.model_response())
                else:
                    yield chat.ChatCompletionToolMessageParam(
                        role='tool',
                        tool_call_id=_guard_tool_call_id(t=part),
                        content=part.model_response(),
                    )
            else:
                assert_never(part)

    async def _map_user_prompt(self, part: UserPromptPart) -> chat.ChatCompletionUserMessageParam:  # noqa: C901
        content: str | list[ChatCompletionContentPartParam]
        if isinstance(part.content, str):
            content = part.content
        else:
            content = []
            for item in part.content:
                if isinstance(item, str):
                    content.append(ChatCompletionContentPartTextParam(text=item, type='text'))
                elif isinstance(item, ImageUrl):
                    image_url: ImageURL = {'url': item.url}
                    if metadata := item.vendor_metadata:
                        image_url['detail'] = metadata.get('detail', 'auto')
                    if item.force_download:
                        image_content = await download_item(item, data_format='base64_uri', type_format='extension')
                        image_url['url'] = image_content['data']
                    content.append(ChatCompletionContentPartImageParam(image_url=image_url, type='image_url'))
                elif isinstance(item, BinaryContent):
                    if self._is_text_like_media_type(item.media_type):
                        # Inline text-like binary content as a text block
                        content.append(
                            self._inline_text_file_part(
                                item.data.decode('utf-8'),
                                media_type=item.media_type,
                                identifier=item.identifier,
                            )
                        )
                    elif item.is_image:
                        image_url = ImageURL(url=item.data_uri)
                        if metadata := item.vendor_metadata:
                            image_url['detail'] = metadata.get('detail', 'auto')
                        content.append(ChatCompletionContentPartImageParam(image_url=image_url, type='image_url'))
                    elif item.is_audio:
                        assert item.format in ('wav', 'mp3')
                        audio = InputAudio(data=base64.b64encode(item.data).decode('utf-8'), format=item.format)
                        content.append(ChatCompletionContentPartInputAudioParam(input_audio=audio, type='input_audio'))
                    elif item.is_document:
                        content.append(
                            File(
                                file=FileFile(
                                    file_data=item.data_uri,
                                    filename=f'filename.{item.format}',
                                ),
                                type='file',
                            )
                        )
                    else:  # pragma: no cover
                        raise RuntimeError(f'Unsupported binary content type: {item.media_type}')
                elif isinstance(item, AudioUrl):
                    downloaded_item = await download_item(item, data_format='base64', type_format='extension')
                    assert downloaded_item['data_type'] in (
                        'wav',
                        'mp3',
                    ), f'Unsupported audio format: {downloaded_item["data_type"]}'
                    audio = InputAudio(data=downloaded_item['data'], format=downloaded_item['data_type'])
                    content.append(ChatCompletionContentPartInputAudioParam(input_audio=audio, type='input_audio'))
                elif isinstance(item, DocumentUrl):
                    if self._is_text_like_media_type(item.media_type):
                        downloaded_text = await download_item(item, data_format='text')
                        content.append(
                            self._inline_text_file_part(
                                downloaded_text['data'],
                                media_type=item.media_type,
                                identifier=item.identifier,
                            )
                        )
                    else:
                        downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension')
                        content.append(
                            File(
                                file=FileFile(
                                    file_data=downloaded_item['data'],
                                    filename=f'filename.{downloaded_item["data_type"]}',
                                ),
                                type='file',
                            )
                        )
                elif isinstance(item, VideoUrl):  # pragma: no cover
                    raise NotImplementedError('VideoUrl is not supported for OpenAI')
                elif isinstance(item, CachePoint):
                    # OpenAI doesn't support prompt caching via CachePoint, so we filter it out
                    pass
                else:
                    assert_never(item)
        return chat.ChatCompletionUserMessageParam(role='user', content=content)

    @staticmethod
    def _is_text_like_media_type(media_type: str) -> bool:
        return (
            media_type.startswith('text/')
            or media_type == 'application/json'
            or media_type.endswith('+json')
            or media_type == 'application/xml'
            or media_type.endswith('+xml')
            or media_type in ('application/x-yaml', 'application/yaml')
        )

    @staticmethod
    def _inline_text_file_part(text: str, *, media_type: str, identifier: str) -> ChatCompletionContentPartTextParam:
        text = '\n'.join(
            [
                f'-----BEGIN FILE id="{identifier}" type="{media_type}"-----',
                text,
                f'-----END FILE id="{identifier}"-----',
            ]
        )
        return ChatCompletionContentPartTextParam(text=text, type='text')

__init__

__init__(
    model_name: OpenAIModelName,
    *,
    provider: (
        Literal[
            "azure",
            "deepseek",
            "cerebras",
            "fireworks",
            "github",
            "grok",
            "heroku",
            "moonshotai",
            "ollama",
            "openai",
            "openai-chat",
            "openrouter",
            "together",
            "vercel",
            "litellm",
            "nebius",
            "ovhcloud",
            "gateway",
        ]
        | Provider[AsyncOpenAI]
    ) = "openai",
    profile: ModelProfileSpec | None = None,
    settings: ModelSettings | None = None
) -> None
__init__(
    model_name: OpenAIModelName,
    *,
    provider: (
        Literal[
            "azure",
            "deepseek",
            "cerebras",
            "fireworks",
            "github",
            "grok",
            "heroku",
            "moonshotai",
            "ollama",
            "openai",
            "openai-chat",
            "openrouter",
            "together",
            "vercel",
            "litellm",
            "nebius",
            "ovhcloud",
            "gateway",
        ]
        | Provider[AsyncOpenAI]
    ) = "openai",
    profile: ModelProfileSpec | None = None,
    system_prompt_role: (
        OpenAISystemPromptRole | None
    ) = None,
    settings: ModelSettings | None = None
) -> None
__init__(
    model_name: OpenAIModelName,
    *,
    provider: (
        Literal[
            "azure",
            "deepseek",
            "cerebras",
            "fireworks",
            "github",
            "grok",
            "heroku",
            "moonshotai",
            "ollama",
            "openai",
            "openai-chat",
            "openrouter",
            "together",
            "vercel",
            "litellm",
            "nebius",
            "ovhcloud",
            "gateway",
        ]
        | Provider[AsyncOpenAI]
    ) = "openai",
    profile: ModelProfileSpec | None = None,
    system_prompt_role: (
        OpenAISystemPromptRole | None
    ) = None,
    settings: ModelSettings | None = None
)

Initialize an OpenAI model.

Parameters:

Name Type Description Default
model_name OpenAIModelName

The name of the OpenAI model to use. List of model names available here (Unfortunately, despite being ask to do so, OpenAI do not provide .inv files for their API).

required
provider Literal['azure', 'deepseek', 'cerebras', 'fireworks', 'github', 'grok', 'heroku', 'moonshotai', 'ollama', 'openai', 'openai-chat', 'openrouter', 'together', 'vercel', 'litellm', 'nebius', 'ovhcloud', 'gateway'] | Provider[AsyncOpenAI]

The provider to use. Defaults to 'openai'.

'openai'
profile ModelProfileSpec | None

The model profile to use. Defaults to a profile picked by the provider based on the model name.

None
system_prompt_role OpenAISystemPromptRole | None

The role to use for the system prompt message. If not provided, defaults to 'system'. In the future, this may be inferred from the model name.

None
settings ModelSettings | None

Default model settings for this model instance.

None
Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def __init__(
    self,
    model_name: OpenAIModelName,
    *,
    provider: Literal[
        'azure',
        'deepseek',
        'cerebras',
        'fireworks',
        'github',
        'grok',
        'heroku',
        'moonshotai',
        'ollama',
        'openai',
        'openai-chat',
        'openrouter',
        'together',
        'vercel',
        'litellm',
        'nebius',
        'ovhcloud',
        'gateway',
    ]
    | Provider[AsyncOpenAI] = 'openai',
    profile: ModelProfileSpec | None = None,
    system_prompt_role: OpenAISystemPromptRole | None = None,
    settings: ModelSettings | None = None,
):
    """Initialize an OpenAI model.

    Args:
        model_name: The name of the OpenAI model to use. List of model names available
            [here](https://github.com/openai/openai-python/blob/v1.54.3/src/openai/types/chat_model.py#L7)
            (Unfortunately, despite being ask to do so, OpenAI do not provide `.inv` files for their API).
        provider: The provider to use. Defaults to `'openai'`.
        profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
        system_prompt_role: The role to use for the system prompt message. If not provided, defaults to `'system'`.
            In the future, this may be inferred from the model name.
        settings: Default model settings for this model instance.
    """
    self._model_name = model_name

    if isinstance(provider, str):
        provider = infer_provider('gateway/openai' if provider == 'gateway' else provider)
    self._provider = provider
    self.client = provider.client

    super().__init__(settings=settings, profile=profile or provider.model_profile)

    if system_prompt_role is not None:
        self.profile = OpenAIModelProfile(openai_system_prompt_role=system_prompt_role).update(self.profile)

model_name property

model_name: OpenAIModelName

The model name.

system property

system: str

The model provider.

OpenAIModel dataclass deprecated

Bases: OpenAIChatModel

Deprecated

OpenAIModel was renamed to OpenAIChatModel to clearly distinguish it from OpenAIResponsesModel which uses OpenAI's newer Responses API. Use that unless you're using an OpenAI Chat Completions-compatible API, or require a feature that the Responses API doesn't support yet like audio.

Deprecated alias for OpenAIChatModel.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
1067
1068
1069
1070
1071
1072
1073
1074
@deprecated(
    '`OpenAIModel` was renamed to `OpenAIChatModel` to clearly distinguish it from `OpenAIResponsesModel` which '
    "uses OpenAI's newer Responses API. Use that unless you're using an OpenAI Chat Completions-compatible API, or "
    "require a feature that the Responses API doesn't support yet like audio."
)
@dataclass(init=False)
class OpenAIModel(OpenAIChatModel):
    """Deprecated alias for `OpenAIChatModel`."""

OpenAIResponsesModel dataclass

Bases: Model

A model that uses the OpenAI Responses API.

The OpenAI Responses API is the new API for OpenAI models.

If you are interested in the differences between the Responses API and the Chat Completions API, see the OpenAI API docs.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
@dataclass(init=False)
class OpenAIResponsesModel(Model):
    """A model that uses the OpenAI Responses API.

    The [OpenAI Responses API](https://platform.openai.com/docs/api-reference/responses) is the
    new API for OpenAI models.

    If you are interested in the differences between the Responses API and the Chat Completions API,
    see the [OpenAI API docs](https://platform.openai.com/docs/guides/responses-vs-chat-completions).
    """

    client: AsyncOpenAI = field(repr=False)

    _model_name: OpenAIModelName = field(repr=False)
    _provider: Provider[AsyncOpenAI] = field(repr=False)

    def __init__(
        self,
        model_name: OpenAIModelName,
        *,
        provider: Literal[
            'openai',
            'deepseek',
            'azure',
            'openrouter',
            'grok',
            'fireworks',
            'together',
            'nebius',
            'ovhcloud',
            'gateway',
        ]
        | Provider[AsyncOpenAI] = 'openai',
        profile: ModelProfileSpec | None = None,
        settings: ModelSettings | None = None,
    ):
        """Initialize an OpenAI Responses model.

        Args:
            model_name: The name of the OpenAI model to use.
            provider: The provider to use. Defaults to `'openai'`.
            profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
            settings: Default model settings for this model instance.
        """
        self._model_name = model_name

        if isinstance(provider, str):
            provider = infer_provider('gateway/openai' if provider == 'gateway' else provider)
        self._provider = provider
        self.client = provider.client

        super().__init__(settings=settings, profile=profile or provider.model_profile)

    @property
    def base_url(self) -> str:
        return str(self.client.base_url)

    @property
    def model_name(self) -> OpenAIModelName:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The model provider."""
        return self._provider.name

    async def request(
        self,
        messages: list[ModelRequest | ModelResponse],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ModelResponse:
        check_allow_model_requests()
        model_settings, model_request_parameters = self.prepare_request(
            model_settings,
            model_request_parameters,
        )
        response = await self._responses_create(
            messages, False, cast(OpenAIResponsesModelSettings, model_settings or {}), model_request_parameters
        )
        return self._process_response(response, model_request_parameters)

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
        run_context: RunContext[Any] | None = None,
    ) -> AsyncIterator[StreamedResponse]:
        check_allow_model_requests()
        model_settings, model_request_parameters = self.prepare_request(
            model_settings,
            model_request_parameters,
        )
        response = await self._responses_create(
            messages, True, cast(OpenAIResponsesModelSettings, model_settings or {}), model_request_parameters
        )
        async with response:
            yield await self._process_streamed_response(response, model_request_parameters)

    def _process_response(  # noqa: C901
        self, response: responses.Response, model_request_parameters: ModelRequestParameters
    ) -> ModelResponse:
        """Process a non-streamed response, and prepare a message to return."""
        timestamp = number_to_datetime(response.created_at)
        items: list[ModelResponsePart] = []
        for item in response.output:
            if isinstance(item, responses.ResponseReasoningItem):
                signature = item.encrypted_content
                # Handle raw CoT content from gpt-oss models
                raw_content: list[str] | None = [c.text for c in item.content] if item.content else None
                provider_details: dict[str, Any] | None = {'raw_content': raw_content} if raw_content else None

                if item.summary:
                    for summary in item.summary:
                        # We use the same id for all summaries so that we can merge them on the round trip.
                        items.append(
                            ThinkingPart(
                                content=summary.text,
                                id=item.id,
                                signature=signature,
                                provider_name=self.system if (signature or provider_details) else None,
                                provider_details=provider_details,
                            )
                        )
                        # We only need to store the signature and raw_content once.
                        signature = None
                        provider_details = None
                elif signature or provider_details:
                    items.append(
                        ThinkingPart(
                            content='',
                            id=item.id,
                            signature=signature,
                            provider_name=self.system if (signature or provider_details) else None,
                            provider_details=provider_details,
                        )
                    )
            elif isinstance(item, responses.ResponseOutputMessage):
                for content in item.content:
                    if isinstance(content, responses.ResponseOutputText):  # pragma: no branch
                        part_provider_details: dict[str, Any] | None = None
                        if content.logprobs:
                            part_provider_details = {'logprobs': _map_logprobs(content.logprobs)}
                        items.append(TextPart(content.text, id=item.id, provider_details=part_provider_details))
            elif isinstance(item, responses.ResponseFunctionToolCall):
                items.append(
                    ToolCallPart(
                        item.name,
                        item.arguments,
                        tool_call_id=item.call_id,
                        id=item.id,
                    )
                )
            elif isinstance(item, responses.ResponseCodeInterpreterToolCall):
                call_part, return_part, file_parts = _map_code_interpreter_tool_call(item, self.system)
                items.append(call_part)
                if file_parts:
                    items.extend(file_parts)
                items.append(return_part)
            elif isinstance(item, responses.ResponseFunctionWebSearch):
                call_part, return_part = _map_web_search_tool_call(item, self.system)
                items.append(call_part)
                items.append(return_part)
            elif isinstance(item, responses.response_output_item.ImageGenerationCall):
                call_part, return_part, file_part = _map_image_generation_tool_call(item, self.system)
                items.append(call_part)
                if file_part:  # pragma: no branch
                    items.append(file_part)
                items.append(return_part)
            elif isinstance(item, responses.ResponseComputerToolCall):  # pragma: no cover
                # Pydantic AI doesn't yet support the ComputerUse built-in tool
                pass
            elif isinstance(item, responses.ResponseCustomToolCall):  # pragma: no cover
                # Support is being implemented in https://github.com/pydantic/pydantic-ai/pull/2572
                pass
            elif isinstance(item, responses.response_output_item.LocalShellCall):  # pragma: no cover
                # Pydantic AI doesn't yet support the `codex-mini-latest` LocalShell built-in tool
                pass
            elif isinstance(item, responses.ResponseFileSearchToolCall):  # pragma: no cover
                # Pydantic AI doesn't yet support the FileSearch built-in tool
                pass
            elif isinstance(item, responses.response_output_item.McpCall):
                call_part, return_part = _map_mcp_call(item, self.system)
                items.append(call_part)
                items.append(return_part)
            elif isinstance(item, responses.response_output_item.McpListTools):
                call_part, return_part = _map_mcp_list_tools(item, self.system)
                items.append(call_part)
                items.append(return_part)
            elif isinstance(item, responses.response_output_item.McpApprovalRequest):  # pragma: no cover
                # Pydantic AI doesn't yet support McpApprovalRequest (explicit tool usage approval)
                pass

        finish_reason: FinishReason | None = None
        provider_details: dict[str, Any] | None = None
        raw_finish_reason = details.reason if (details := response.incomplete_details) else response.status
        if raw_finish_reason:
            provider_details = {'finish_reason': raw_finish_reason}
            finish_reason = _RESPONSES_FINISH_REASON_MAP.get(raw_finish_reason)

        return ModelResponse(
            parts=items,
            usage=_map_usage(response, self._provider.name, self._provider.base_url, self.model_name),
            model_name=response.model,
            provider_response_id=response.id,
            timestamp=timestamp,
            provider_name=self._provider.name,
            provider_url=self._provider.base_url,
            finish_reason=finish_reason,
            provider_details=provider_details,
        )

    async def _process_streamed_response(
        self,
        response: AsyncStream[responses.ResponseStreamEvent],
        model_request_parameters: ModelRequestParameters,
    ) -> OpenAIResponsesStreamedResponse:
        """Process a streamed response, and prepare a streaming response to return."""
        peekable_response = _utils.PeekableAsyncStream(response)
        first_chunk = await peekable_response.peek()
        if isinstance(first_chunk, _utils.Unset):  # pragma: no cover
            raise UnexpectedModelBehavior('Streamed response ended without content or tool calls')

        assert isinstance(first_chunk, responses.ResponseCreatedEvent)
        return OpenAIResponsesStreamedResponse(
            model_request_parameters=model_request_parameters,
            _model_name=first_chunk.response.model,
            _response=peekable_response,
            _timestamp=number_to_datetime(first_chunk.response.created_at),
            _provider_name=self._provider.name,
            _provider_url=self._provider.base_url,
        )

    @overload
    async def _responses_create(
        self,
        messages: list[ModelRequest | ModelResponse],
        stream: Literal[False],
        model_settings: OpenAIResponsesModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> responses.Response: ...

    @overload
    async def _responses_create(
        self,
        messages: list[ModelRequest | ModelResponse],
        stream: Literal[True],
        model_settings: OpenAIResponsesModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncStream[responses.ResponseStreamEvent]: ...

    async def _responses_create(  # noqa: C901
        self,
        messages: list[ModelRequest | ModelResponse],
        stream: bool,
        model_settings: OpenAIResponsesModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> responses.Response | AsyncStream[responses.ResponseStreamEvent]:
        tools = (
            self._get_builtin_tools(model_request_parameters)
            + list(model_settings.get('openai_builtin_tools', []))
            + self._get_tools(model_request_parameters)
        )
        profile = OpenAIModelProfile.from_profile(self.profile)
        if not tools:
            tool_choice: Literal['none', 'required', 'auto'] | None = None
        elif not model_request_parameters.allow_text_output and profile.openai_supports_tool_choice_required:
            tool_choice = 'required'
        else:
            tool_choice = 'auto'

        previous_response_id = model_settings.get('openai_previous_response_id')
        if previous_response_id == 'auto':
            previous_response_id, messages = self._get_previous_response_id_and_new_messages(messages)

        instructions, openai_messages = await self._map_messages(messages, model_settings, model_request_parameters)
        reasoning = self._get_reasoning(model_settings)

        text: responses.ResponseTextConfigParam | None = None
        if model_request_parameters.output_mode == 'native':
            output_object = model_request_parameters.output_object
            assert output_object is not None
            text = {'format': self._map_json_schema(output_object)}
        elif (
            model_request_parameters.output_mode == 'prompted' and self.profile.supports_json_object_output
        ):  # pragma: no branch
            text = {'format': {'type': 'json_object'}}

            # Without this trick, we'd hit this error:
            # > Response input messages must contain the word 'json' in some form to use 'text.format' of type 'json_object'.
            # Apparently they're only checking input messages for "JSON", not instructions.
            assert isinstance(instructions, str)
            openai_messages.insert(0, responses.EasyInputMessageParam(role='system', content=instructions))
            instructions = OMIT

        if verbosity := model_settings.get('openai_text_verbosity'):
            text = text or {}
            text['verbosity'] = verbosity

        unsupported_model_settings = profile.openai_unsupported_model_settings
        for setting in unsupported_model_settings:
            model_settings.pop(setting, None)

        include: list[responses.ResponseIncludable] = []
        if profile.openai_supports_encrypted_reasoning_content:
            include.append('reasoning.encrypted_content')
        if model_settings.get('openai_include_code_execution_outputs'):
            include.append('code_interpreter_call.outputs')
        if model_settings.get('openai_include_web_search_sources'):
            include.append('web_search_call.action.sources')
        if model_settings.get('openai_logprobs'):
            include.append('message.output_text.logprobs')

        # When there are no input messages and we're not reusing a previous response,
        # the OpenAI API will reject a request without any input,
        # even if there are instructions.
        # To avoid this provide an explicit empty user message.
        if not openai_messages and not previous_response_id:
            openai_messages.append(
                responses.EasyInputMessageParam(
                    role='user',
                    content='',
                )
            )

        try:
            extra_headers = model_settings.get('extra_headers', {})
            extra_headers.setdefault('User-Agent', get_user_agent())
            return await self.client.responses.create(
                input=openai_messages,
                model=self.model_name,
                instructions=instructions,
                parallel_tool_calls=model_settings.get('parallel_tool_calls', OMIT),
                tools=tools or OMIT,
                tool_choice=tool_choice or OMIT,
                max_output_tokens=model_settings.get('max_tokens', OMIT),
                stream=stream,
                temperature=model_settings.get('temperature', OMIT),
                top_p=model_settings.get('top_p', OMIT),
                truncation=model_settings.get('openai_truncation', OMIT),
                timeout=model_settings.get('timeout', NOT_GIVEN),
                service_tier=model_settings.get('openai_service_tier', OMIT),
                previous_response_id=previous_response_id or OMIT,
                top_logprobs=model_settings.get('openai_top_logprobs', OMIT),
                reasoning=reasoning,
                user=model_settings.get('openai_user', OMIT),
                text=text or OMIT,
                include=include or OMIT,
                prompt_cache_key=model_settings.get('openai_prompt_cache_key', OMIT),
                prompt_cache_retention=model_settings.get('openai_prompt_cache_retention', OMIT),
                extra_headers=extra_headers,
                extra_body=model_settings.get('extra_body'),
            )
        except APIStatusError as e:
            if (status_code := e.status_code) >= 400:
                raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.body) from e
            raise  # pragma: lax no cover
        except APIConnectionError as e:
            raise ModelAPIError(model_name=self.model_name, message=e.message) from e

    def _get_reasoning(self, model_settings: OpenAIResponsesModelSettings) -> Reasoning | Omit:
        reasoning_effort = model_settings.get('openai_reasoning_effort', None)
        reasoning_summary = model_settings.get('openai_reasoning_summary', None)
        reasoning_generate_summary = model_settings.get('openai_reasoning_generate_summary', None)

        if reasoning_summary and reasoning_generate_summary:  # pragma: no cover
            raise ValueError('`openai_reasoning_summary` and `openai_reasoning_generate_summary` cannot both be set.')

        if reasoning_generate_summary is not None:  # pragma: no cover
            warnings.warn(
                '`openai_reasoning_generate_summary` is deprecated, use `openai_reasoning_summary` instead',
                DeprecationWarning,
            )
            reasoning_summary = reasoning_generate_summary

        if reasoning_effort is None and reasoning_summary is None:
            return OMIT
        return Reasoning(effort=reasoning_effort, summary=reasoning_summary)

    def _get_tools(self, model_request_parameters: ModelRequestParameters) -> list[responses.FunctionToolParam]:
        return [self._map_tool_definition(r) for r in model_request_parameters.tool_defs.values()]

    def _get_builtin_tools(self, model_request_parameters: ModelRequestParameters) -> list[responses.ToolParam]:
        tools: list[responses.ToolParam] = []
        has_image_generating_tool = False
        for tool in model_request_parameters.builtin_tools:
            if isinstance(tool, WebSearchTool):
                web_search_tool = responses.WebSearchToolParam(
                    type='web_search', search_context_size=tool.search_context_size
                )
                if tool.user_location:
                    web_search_tool['user_location'] = responses.web_search_tool_param.UserLocation(
                        type='approximate', **tool.user_location
                    )
                tools.append(web_search_tool)
            elif isinstance(tool, CodeExecutionTool):
                has_image_generating_tool = True
                tools.append({'type': 'code_interpreter', 'container': {'type': 'auto'}})
            elif isinstance(tool, MCPServerTool):
                mcp_tool = responses.tool_param.Mcp(
                    type='mcp',
                    server_label=tool.id,
                    require_approval='never',
                )

                if tool.authorization_token:  # pragma: no branch
                    mcp_tool['authorization'] = tool.authorization_token

                if tool.allowed_tools is not None:  # pragma: no branch
                    mcp_tool['allowed_tools'] = tool.allowed_tools

                if tool.description:  # pragma: no branch
                    mcp_tool['server_description'] = tool.description

                if tool.headers:  # pragma: no branch
                    mcp_tool['headers'] = tool.headers

                if tool.url.startswith(MCP_SERVER_TOOL_CONNECTOR_URI_SCHEME + ':'):
                    _, connector_id = tool.url.split(':', maxsplit=1)
                    mcp_tool['connector_id'] = connector_id  # pyright: ignore[reportGeneralTypeIssues]
                else:
                    mcp_tool['server_url'] = tool.url

                tools.append(mcp_tool)
            elif isinstance(tool, ImageGenerationTool):  # pragma: no branch
                has_image_generating_tool = True
                size = _resolve_openai_image_generation_size(tool)
                tools.append(
                    responses.tool_param.ImageGeneration(
                        type='image_generation',
                        background=tool.background,
                        input_fidelity=tool.input_fidelity,
                        moderation=tool.moderation,
                        output_compression=tool.output_compression,
                        output_format=tool.output_format or 'png',
                        partial_images=tool.partial_images,
                        quality=tool.quality,
                        size=size,
                    )
                )
            else:
                raise UserError(  # pragma: no cover
                    f'`{tool.__class__.__name__}` is not supported by `OpenAIResponsesModel`. If it should be, please file an issue.'
                )

        if model_request_parameters.allow_image_output and not has_image_generating_tool:
            tools.append({'type': 'image_generation'})
        return tools

    def _map_tool_definition(self, f: ToolDefinition) -> responses.FunctionToolParam:
        return {
            'name': f.name,
            'parameters': f.parameters_json_schema,
            'type': 'function',
            'description': f.description,
            'strict': bool(
                f.strict and OpenAIModelProfile.from_profile(self.profile).openai_supports_strict_tool_definition
            ),
        }

    def _get_previous_response_id_and_new_messages(
        self, messages: list[ModelMessage]
    ) -> tuple[str | None, list[ModelMessage]]:
        # When `openai_previous_response_id` is set to 'auto', the most recent
        # `provider_response_id` from the message history is selected and all
        # earlier messages are omitted. This allows the OpenAI SDK to reuse
        # server-side history for efficiency. The returned tuple contains the
        # `previous_response_id` (if found) and the trimmed list of messages.
        previous_response_id = None
        trimmed_messages: list[ModelMessage] = []
        for m in reversed(messages):
            if isinstance(m, ModelResponse) and m.provider_name == self.system:
                previous_response_id = m.provider_response_id
                break
            else:
                trimmed_messages.append(m)

        if previous_response_id and trimmed_messages:
            return previous_response_id, list(reversed(trimmed_messages))
        else:
            return None, messages

    async def _map_messages(  # noqa: C901
        self,
        messages: list[ModelMessage],
        model_settings: OpenAIResponsesModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> tuple[str | Omit, list[responses.ResponseInputItemParam]]:
        """Maps a `pydantic_ai.Message` to a `openai.types.responses.ResponseInputParam` i.e. the OpenAI Responses API input format.

        For `ThinkingParts`, this method:
        - Sends `signature` back as `encrypted_content` (for official OpenAI reasoning)
        - Sends `content` back as `summary` text
        - Sends `provider_details['raw_content']` back as `content` items (for gpt-oss raw CoT)

        Raw CoT is sent back to improve model performance in multi-turn conversations.
        """
        profile = OpenAIModelProfile.from_profile(self.profile)
        send_item_ids = model_settings.get(
            'openai_send_reasoning_ids', profile.openai_supports_encrypted_reasoning_content
        )

        openai_messages: list[responses.ResponseInputItemParam] = []
        for message in messages:
            if isinstance(message, ModelRequest):
                for part in message.parts:
                    if isinstance(part, SystemPromptPart):
                        openai_messages.append(responses.EasyInputMessageParam(role='system', content=part.content))
                    elif isinstance(part, UserPromptPart):
                        openai_messages.append(await self._map_user_prompt(part))
                    elif isinstance(part, ToolReturnPart):
                        call_id = _guard_tool_call_id(t=part)
                        call_id, _ = _split_combined_tool_call_id(call_id)
                        item = FunctionCallOutput(
                            type='function_call_output',
                            call_id=call_id,
                            output=part.model_response_str(),
                        )
                        openai_messages.append(item)
                    elif isinstance(part, RetryPromptPart):
                        if part.tool_name is None:
                            openai_messages.append(
                                Message(role='user', content=[{'type': 'input_text', 'text': part.model_response()}])
                            )
                        else:
                            call_id = _guard_tool_call_id(t=part)
                            call_id, _ = _split_combined_tool_call_id(call_id)
                            item = FunctionCallOutput(
                                type='function_call_output',
                                call_id=call_id,
                                output=part.model_response(),
                            )
                            openai_messages.append(item)
                    else:
                        assert_never(part)
            elif isinstance(message, ModelResponse):
                send_item_ids = send_item_ids and message.provider_name == self.system

                message_item: responses.ResponseOutputMessageParam | None = None
                reasoning_item: responses.ResponseReasoningItemParam | None = None
                web_search_item: responses.ResponseFunctionWebSearchParam | None = None
                code_interpreter_item: responses.ResponseCodeInterpreterToolCallParam | None = None
                for item in message.parts:
                    if isinstance(item, TextPart):
                        if item.id and send_item_ids:
                            if message_item is None or message_item['id'] != item.id:  # pragma: no branch
                                message_item = responses.ResponseOutputMessageParam(
                                    role='assistant',
                                    id=item.id,
                                    content=[],
                                    type='message',
                                    status='completed',
                                )
                                openai_messages.append(message_item)

                            message_item['content'] = [
                                *message_item['content'],
                                responses.ResponseOutputTextParam(
                                    text=item.content, type='output_text', annotations=[]
                                ),
                            ]
                        else:
                            openai_messages.append(
                                responses.EasyInputMessageParam(role='assistant', content=item.content)
                            )
                    elif isinstance(item, ToolCallPart):
                        call_id = _guard_tool_call_id(t=item)
                        call_id, id = _split_combined_tool_call_id(call_id)
                        id = id or item.id

                        param = responses.ResponseFunctionToolCallParam(
                            name=item.tool_name,
                            arguments=item.args_as_json_str(),
                            call_id=call_id,
                            type='function_call',
                        )
                        if profile.openai_responses_requires_function_call_status_none:
                            param['status'] = None  # type: ignore[reportGeneralTypeIssues]
                        if id and send_item_ids:  # pragma: no branch
                            param['id'] = id
                        openai_messages.append(param)
                    elif isinstance(item, BuiltinToolCallPart):
                        if item.provider_name == self.system and send_item_ids:  # pragma: no branch
                            if (
                                item.tool_name == CodeExecutionTool.kind
                                and item.tool_call_id
                                and (args := item.args_as_dict())
                                and (container_id := args.get('container_id'))
                            ):
                                code_interpreter_item = responses.ResponseCodeInterpreterToolCallParam(
                                    id=item.tool_call_id,
                                    code=args.get('code'),
                                    container_id=container_id,
                                    outputs=None,  # These can be read server-side
                                    status='completed',
                                    type='code_interpreter_call',
                                )
                                openai_messages.append(code_interpreter_item)
                            elif (
                                item.tool_name == WebSearchTool.kind
                                and item.tool_call_id
                                and (args := item.args_as_dict())
                            ):
                                # We need to exclude None values because of https://github.com/pydantic/pydantic-ai/issues/3653
                                args = {k: v for k, v in args.items() if v is not None}
                                web_search_item = responses.ResponseFunctionWebSearchParam(
                                    id=item.tool_call_id,
                                    action=cast(responses.response_function_web_search_param.Action, args),
                                    status='completed',
                                    type='web_search_call',
                                )
                                openai_messages.append(web_search_item)
                            elif item.tool_name == ImageGenerationTool.kind and item.tool_call_id:
                                # The cast is necessary because of https://github.com/openai/openai-python/issues/2648
                                image_generation_item = cast(
                                    responses.response_input_item_param.ImageGenerationCall,
                                    {
                                        'id': item.tool_call_id,
                                        'type': 'image_generation_call',
                                    },
                                )
                                openai_messages.append(image_generation_item)
                            elif (  # pragma: no branch
                                item.tool_name.startswith(MCPServerTool.kind)
                                and item.tool_call_id
                                and (server_id := item.tool_name.split(':', 1)[1])
                                and (args := item.args_as_dict())
                                and (action := args.get('action'))
                            ):
                                if action == 'list_tools':
                                    mcp_list_tools_item = responses.response_input_item_param.McpListTools(
                                        id=item.tool_call_id,
                                        type='mcp_list_tools',
                                        server_label=server_id,
                                        tools=[],  # These can be read server-side
                                    )
                                    openai_messages.append(mcp_list_tools_item)
                                elif (  # pragma: no branch
                                    action == 'call_tool'
                                    and (tool_name := args.get('tool_name'))
                                    and (tool_args := args.get('tool_args'))
                                ):
                                    mcp_call_item = responses.response_input_item_param.McpCall(
                                        id=item.tool_call_id,
                                        server_label=server_id,
                                        name=tool_name,
                                        arguments=to_json(tool_args).decode(),
                                        error=None,  # These can be read server-side
                                        output=None,  # These can be read server-side
                                        type='mcp_call',
                                    )
                                    openai_messages.append(mcp_call_item)

                    elif isinstance(item, BuiltinToolReturnPart):
                        if item.provider_name == self.system and send_item_ids:  # pragma: no branch
                            if (
                                item.tool_name == CodeExecutionTool.kind
                                and code_interpreter_item is not None
                                and isinstance(item.content, dict)
                                and (content := cast(dict[str, Any], item.content))  # pyright: ignore[reportUnknownMemberType]
                                and (status := content.get('status'))
                            ):
                                code_interpreter_item['status'] = status
                            elif (
                                item.tool_name == WebSearchTool.kind
                                and web_search_item is not None
                                and isinstance(item.content, dict)  # pyright: ignore[reportUnknownMemberType]
                                and (content := cast(dict[str, Any], item.content))  # pyright: ignore[reportUnknownMemberType]
                                and (status := content.get('status'))
                            ):
                                web_search_item['status'] = status
                            elif item.tool_name == ImageGenerationTool.kind:
                                # Image generation result does not need to be sent back, just the `id` off of `BuiltinToolCallPart`.
                                pass
                            elif item.tool_name.startswith(MCPServerTool.kind):  # pragma: no branch
                                # MCP call result does not need to be sent back, just the fields off of `BuiltinToolCallPart`.
                                pass
                    elif isinstance(item, FilePart):
                        # This was generated by the `ImageGenerationTool` or `CodeExecutionTool`,
                        # and does not need to be sent back separately from the corresponding `BuiltinToolReturnPart`.
                        # If `send_item_ids` is false, we won't send the `BuiltinToolReturnPart`, but OpenAI does not have a type for files from the assistant.
                        pass
                    elif isinstance(item, ThinkingPart):
                        # Get raw CoT content from provider_details if present and from this provider
                        raw_content: list[str] | None = None
                        if item.provider_name == self.system:
                            raw_content = (item.provider_details or {}).get('raw_content')

                        if item.id and (send_item_ids or raw_content):
                            signature: str | None = None
                            if (
                                item.signature
                                and item.provider_name == self.system
                                and profile.openai_supports_encrypted_reasoning_content
                            ):
                                signature = item.signature

                            if (reasoning_item is None or reasoning_item['id'] != item.id) and (
                                signature or item.content or raw_content
                            ):  # pragma: no branch
                                reasoning_item = responses.ResponseReasoningItemParam(
                                    id=item.id,
                                    summary=[],
                                    encrypted_content=signature,
                                    type='reasoning',
                                )
                                openai_messages.append(reasoning_item)

                            if item.content:
                                # The check above guarantees that `reasoning_item` is not None
                                assert reasoning_item is not None
                                reasoning_item['summary'] = [
                                    *reasoning_item['summary'],
                                    ReasoningSummary(text=item.content, type='summary_text'),
                                ]

                            if raw_content:
                                # Send raw CoT back
                                assert reasoning_item is not None
                                reasoning_item['content'] = [
                                    ReasoningContent(text=text, type='reasoning_text') for text in raw_content
                                ]
                        else:
                            start_tag, end_tag = profile.thinking_tags
                            openai_messages.append(
                                responses.EasyInputMessageParam(
                                    role='assistant', content='\n'.join([start_tag, item.content, end_tag])
                                )
                            )
                    else:
                        assert_never(item)
            else:
                assert_never(message)
        instructions = self._get_instructions(messages, model_request_parameters) or OMIT
        return instructions, openai_messages

    def _map_json_schema(self, o: OutputObjectDefinition) -> responses.ResponseFormatTextJSONSchemaConfigParam:
        response_format_param: responses.ResponseFormatTextJSONSchemaConfigParam = {
            'type': 'json_schema',
            'name': o.name or DEFAULT_OUTPUT_TOOL_NAME,
            'schema': o.json_schema,
        }
        if o.description:
            response_format_param['description'] = o.description
        if OpenAIModelProfile.from_profile(self.profile).openai_supports_strict_tool_definition:  # pragma: no branch
            response_format_param['strict'] = o.strict
        return response_format_param

    @staticmethod
    async def _map_user_prompt(part: UserPromptPart) -> responses.EasyInputMessageParam:  # noqa: C901
        content: str | list[responses.ResponseInputContentParam]
        if isinstance(part.content, str):
            content = part.content
        else:
            content = []
            for item in part.content:
                if isinstance(item, str):
                    content.append(responses.ResponseInputTextParam(text=item, type='input_text'))
                elif isinstance(item, BinaryContent):
                    if item.is_image:
                        detail: Literal['auto', 'low', 'high'] = 'auto'
                        if metadata := item.vendor_metadata:
                            detail = cast(
                                Literal['auto', 'low', 'high'],
                                metadata.get('detail', 'auto'),
                            )
                        content.append(
                            responses.ResponseInputImageParam(
                                image_url=item.data_uri,
                                type='input_image',
                                detail=detail,
                            )
                        )
                    elif item.is_document:
                        content.append(
                            responses.ResponseInputFileParam(
                                type='input_file',
                                file_data=item.data_uri,
                                # NOTE: Type wise it's not necessary to include the filename, but it's required by the
                                # API itself. If we add empty string, the server sends a 500 error - which OpenAI needs
                                # to fix. In any case, we add a placeholder name.
                                filename=f'filename.{item.format}',
                            )
                        )
                    elif item.is_audio:
                        raise NotImplementedError('Audio as binary content is not supported for OpenAI Responses API.')
                    else:  # pragma: no cover
                        raise RuntimeError(f'Unsupported binary content type: {item.media_type}')
                elif isinstance(item, ImageUrl):
                    detail: Literal['auto', 'low', 'high'] = 'auto'
                    image_url = item.url
                    if metadata := item.vendor_metadata:
                        detail = cast(Literal['auto', 'low', 'high'], metadata.get('detail', 'auto'))
                    if item.force_download:
                        downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension')
                        image_url = downloaded_item['data']

                    content.append(
                        responses.ResponseInputImageParam(
                            image_url=image_url,
                            type='input_image',
                            detail=detail,
                        )
                    )
                elif isinstance(item, AudioUrl):  # pragma: no cover
                    downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension')
                    content.append(
                        responses.ResponseInputFileParam(
                            type='input_file',
                            file_data=downloaded_item['data'],
                            filename=f'filename.{downloaded_item["data_type"]}',
                        )
                    )
                elif isinstance(item, DocumentUrl):
                    downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension')
                    content.append(
                        responses.ResponseInputFileParam(
                            type='input_file',
                            file_data=downloaded_item['data'],
                            filename=f'filename.{downloaded_item["data_type"]}',
                        )
                    )
                elif isinstance(item, VideoUrl):  # pragma: no cover
                    raise NotImplementedError('VideoUrl is not supported for OpenAI.')
                elif isinstance(item, CachePoint):
                    # OpenAI doesn't support prompt caching via CachePoint, so we filter it out
                    pass
                else:
                    assert_never(item)
        return responses.EasyInputMessageParam(role='user', content=content)

__init__

__init__(
    model_name: OpenAIModelName,
    *,
    provider: (
        Literal[
            "openai",
            "deepseek",
            "azure",
            "openrouter",
            "grok",
            "fireworks",
            "together",
            "nebius",
            "ovhcloud",
            "gateway",
        ]
        | Provider[AsyncOpenAI]
    ) = "openai",
    profile: ModelProfileSpec | None = None,
    settings: ModelSettings | None = None
)

Initialize an OpenAI Responses model.

Parameters:

Name Type Description Default
model_name OpenAIModelName

The name of the OpenAI model to use.

required
provider Literal['openai', 'deepseek', 'azure', 'openrouter', 'grok', 'fireworks', 'together', 'nebius', 'ovhcloud', 'gateway'] | Provider[AsyncOpenAI]

The provider to use. Defaults to 'openai'.

'openai'
profile ModelProfileSpec | None

The model profile to use. Defaults to a profile picked by the provider based on the model name.

None
settings ModelSettings | None

Default model settings for this model instance.

None
Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
def __init__(
    self,
    model_name: OpenAIModelName,
    *,
    provider: Literal[
        'openai',
        'deepseek',
        'azure',
        'openrouter',
        'grok',
        'fireworks',
        'together',
        'nebius',
        'ovhcloud',
        'gateway',
    ]
    | Provider[AsyncOpenAI] = 'openai',
    profile: ModelProfileSpec | None = None,
    settings: ModelSettings | None = None,
):
    """Initialize an OpenAI Responses model.

    Args:
        model_name: The name of the OpenAI model to use.
        provider: The provider to use. Defaults to `'openai'`.
        profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
        settings: Default model settings for this model instance.
    """
    self._model_name = model_name

    if isinstance(provider, str):
        provider = infer_provider('gateway/openai' if provider == 'gateway' else provider)
    self._provider = provider
    self.client = provider.client

    super().__init__(settings=settings, profile=profile or provider.model_profile)

model_name property

model_name: OpenAIModelName

The model name.

system property

system: str

The model provider.

OpenAIStreamedResponse dataclass

Bases: StreamedResponse

Implementation of StreamedResponse for OpenAI models.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
@dataclass
class OpenAIStreamedResponse(StreamedResponse):
    """Implementation of `StreamedResponse` for OpenAI models."""

    _model_name: OpenAIModelName
    _model_profile: ModelProfile
    _response: AsyncIterable[ChatCompletionChunk]
    _timestamp: datetime
    _provider_name: str
    _provider_url: str

    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
        async for chunk in self._validate_response():
            self._usage += self._map_usage(chunk)

            if chunk.id:  # pragma: no branch
                self.provider_response_id = chunk.id

            if chunk.model:
                self._model_name = chunk.model

            try:
                choice = chunk.choices[0]
            except IndexError:
                continue

            # When using Azure OpenAI and an async content filter is enabled, the openai SDK can return None deltas.
            if choice.delta is None:  # pyright: ignore[reportUnnecessaryComparison]
                continue

            if raw_finish_reason := choice.finish_reason:
                self.finish_reason = self._map_finish_reason(raw_finish_reason)

            if provider_details := self._map_provider_details(chunk):
                self.provider_details = provider_details

            for event in self._map_part_delta(choice):
                yield event

    def _validate_response(self) -> AsyncIterable[ChatCompletionChunk]:
        """Hook that validates incoming chunks.

        This method may be overridden by subclasses of `OpenAIStreamedResponse` to apply custom chunk validations.

        By default, this is a no-op since `ChatCompletionChunk` is already validated.
        """
        return self._response

    def _map_part_delta(self, choice: chat_completion_chunk.Choice) -> Iterable[ModelResponseStreamEvent]:
        """Hook that determines the sequence of mappings that will be called to produce events.

        This method may be overridden by subclasses of `OpenAIStreamResponse` to customize the mapping.
        """
        return itertools.chain(
            self._map_thinking_delta(choice), self._map_text_delta(choice), self._map_tool_call_delta(choice)
        )

    def _map_thinking_delta(self, choice: chat_completion_chunk.Choice) -> Iterable[ModelResponseStreamEvent]:
        """Hook that maps thinking delta content to events.

        This method may be overridden by subclasses of `OpenAIStreamResponse` to customize the mapping.
        """
        profile = OpenAIModelProfile.from_profile(self._model_profile)
        custom_field = profile.openai_chat_thinking_field

        # Prefer the configured custom reasoning field, if present in profile.
        # Fall back to built-in fields if no custom field result was found.

        # The `reasoning_content` field is typically present in DeepSeek and Moonshot models.
        # https://api-docs.deepseek.com/guides/reasoning_model

        # The `reasoning` field is typically present in gpt-oss via Ollama and OpenRouter.
        # - https://cookbook.openai.com/articles/gpt-oss/handle-raw-cot#chat-completions-api
        # - https://openrouter.ai/docs/use-cases/reasoning-tokens#basic-usage-with-reasoning-tokens
        for field_name in (custom_field, 'reasoning', 'reasoning_content'):
            if not field_name:
                continue
            reasoning: str | None = getattr(choice.delta, field_name, None)
            if reasoning:  # pragma: no branch
                yield from self._parts_manager.handle_thinking_delta(
                    vendor_part_id=field_name,
                    id=field_name,
                    content=reasoning,
                    provider_name=self.provider_name,
                )
                break

    def _map_text_delta(self, choice: chat_completion_chunk.Choice) -> Iterable[ModelResponseStreamEvent]:
        """Hook that maps text delta content to events.

        This method may be overridden by subclasses of `OpenAIStreamResponse` to customize the mapping.
        """
        # Handle the text part of the response
        content = choice.delta.content
        if content:
            for event in self._parts_manager.handle_text_delta(
                vendor_part_id='content',
                content=content,
                thinking_tags=self._model_profile.thinking_tags,
                ignore_leading_whitespace=self._model_profile.ignore_streamed_leading_whitespace,
            ):
                if isinstance(event, PartStartEvent) and isinstance(event.part, ThinkingPart):
                    event.part.id = 'content'
                    event.part.provider_name = self.provider_name
                yield event

    def _map_tool_call_delta(self, choice: chat_completion_chunk.Choice) -> Iterable[ModelResponseStreamEvent]:
        """Hook that maps tool call delta content to events.

        This method may be overridden by subclasses of `OpenAIStreamResponse` to customize the mapping.
        """
        for dtc in choice.delta.tool_calls or []:
            maybe_event = self._parts_manager.handle_tool_call_delta(
                vendor_part_id=dtc.index,
                tool_name=dtc.function and dtc.function.name,
                args=dtc.function and dtc.function.arguments,
                tool_call_id=dtc.id,
            )
            if maybe_event is not None:
                yield maybe_event

    def _map_provider_details(self, chunk: ChatCompletionChunk) -> dict[str, Any] | None:
        """Hook that generates the provider details from chunk content.

        This method may be overridden by subclasses of `OpenAIStreamResponse` to customize the provider details.
        """
        return _map_provider_details(chunk.choices[0])

    def _map_usage(self, response: ChatCompletionChunk) -> usage.RequestUsage:
        return _map_usage(response, self._provider_name, self._provider_url, self.model_name)

    def _map_finish_reason(
        self, key: Literal['stop', 'length', 'tool_calls', 'content_filter', 'function_call']
    ) -> FinishReason | None:
        """Hooks that maps a finish reason key to a [FinishReason](pydantic_ai.messages.FinishReason).

        This method may be overridden by subclasses of `OpenAIChatModel` to accommodate custom keys.
        """
        return _CHAT_FINISH_REASON_MAP.get(key)

    @property
    def model_name(self) -> OpenAIModelName:
        """Get the model name of the response."""
        return self._model_name

    @property
    def provider_name(self) -> str:
        """Get the provider name."""
        return self._provider_name

    @property
    def provider_url(self) -> str:
        """Get the provider base URL."""
        return self._provider_url

    @property
    def timestamp(self) -> datetime:
        """Get the timestamp of the response."""
        return self._timestamp

model_name property

model_name: OpenAIModelName

Get the model name of the response.

provider_name property

provider_name: str

Get the provider name.

provider_url property

provider_url: str

Get the provider base URL.

timestamp property

timestamp: datetime

Get the timestamp of the response.

OpenAIResponsesStreamedResponse dataclass

Bases: StreamedResponse

Implementation of StreamedResponse for OpenAI Responses API.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
@dataclass
class OpenAIResponsesStreamedResponse(StreamedResponse):
    """Implementation of `StreamedResponse` for OpenAI Responses API."""

    _model_name: OpenAIModelName
    _response: AsyncIterable[responses.ResponseStreamEvent]
    _timestamp: datetime
    _provider_name: str
    _provider_url: str

    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:  # noqa: C901
        async for chunk in self._response:
            # NOTE: You can inspect the builtin tools used checking the `ResponseCompletedEvent`.
            if isinstance(chunk, responses.ResponseCompletedEvent):
                self._usage += self._map_usage(chunk.response)

                raw_finish_reason = (
                    details.reason if (details := chunk.response.incomplete_details) else chunk.response.status
                )
                if raw_finish_reason:  # pragma: no branch
                    self.provider_details = {'finish_reason': raw_finish_reason}
                    self.finish_reason = _RESPONSES_FINISH_REASON_MAP.get(raw_finish_reason)

            elif isinstance(chunk, responses.ResponseContentPartAddedEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseContentPartDoneEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseCreatedEvent):
                if chunk.response.id:  # pragma: no branch
                    self.provider_response_id = chunk.response.id

            elif isinstance(chunk, responses.ResponseFailedEvent):  # pragma: no cover
                self._usage += self._map_usage(chunk.response)

            elif isinstance(chunk, responses.ResponseFunctionCallArgumentsDeltaEvent):
                maybe_event = self._parts_manager.handle_tool_call_delta(
                    vendor_part_id=chunk.item_id,
                    args=chunk.delta,
                )
                if maybe_event is not None:  # pragma: no branch
                    yield maybe_event

            elif isinstance(chunk, responses.ResponseFunctionCallArgumentsDoneEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseIncompleteEvent):  # pragma: no cover
                self._usage += self._map_usage(chunk.response)

            elif isinstance(chunk, responses.ResponseInProgressEvent):
                self._usage += self._map_usage(chunk.response)

            elif isinstance(chunk, responses.ResponseOutputItemAddedEvent):
                if isinstance(chunk.item, responses.ResponseFunctionToolCall):
                    yield self._parts_manager.handle_tool_call_part(
                        vendor_part_id=chunk.item.id,
                        tool_name=chunk.item.name,
                        args=chunk.item.arguments,
                        tool_call_id=chunk.item.call_id,
                        id=chunk.item.id,
                    )
                elif isinstance(chunk.item, responses.ResponseReasoningItem):
                    pass
                elif isinstance(chunk.item, responses.ResponseOutputMessage):
                    pass
                elif isinstance(chunk.item, responses.ResponseFunctionWebSearch):
                    call_part, _ = _map_web_search_tool_call(chunk.item, self.provider_name)
                    yield self._parts_manager.handle_part(
                        vendor_part_id=f'{chunk.item.id}-call', part=replace(call_part, args=None)
                    )
                elif isinstance(chunk.item, responses.ResponseCodeInterpreterToolCall):
                    call_part, _, _ = _map_code_interpreter_tool_call(chunk.item, self.provider_name)

                    args_json = call_part.args_as_json_str()
                    # Drop the final `"}` so that we can add code deltas
                    args_json_delta = args_json[:-2]
                    assert args_json_delta.endswith('"code":"'), f'Expected {args_json_delta!r} to end in `"code":"`'

                    yield self._parts_manager.handle_part(
                        vendor_part_id=f'{chunk.item.id}-call', part=replace(call_part, args=None)
                    )
                    maybe_event = self._parts_manager.handle_tool_call_delta(
                        vendor_part_id=f'{chunk.item.id}-call',
                        args=args_json_delta,
                    )
                    if maybe_event is not None:  # pragma: no branch
                        yield maybe_event
                elif isinstance(chunk.item, responses.response_output_item.ImageGenerationCall):
                    call_part, _, _ = _map_image_generation_tool_call(chunk.item, self.provider_name)
                    yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-call', part=call_part)
                elif isinstance(chunk.item, responses.response_output_item.McpCall):
                    call_part, _ = _map_mcp_call(chunk.item, self.provider_name)

                    args_json = call_part.args_as_json_str()
                    # Drop the final `{}}` so that we can add tool args deltas
                    args_json_delta = args_json[:-3]
                    assert args_json_delta.endswith('"tool_args":'), (
                        f'Expected {args_json_delta!r} to end in `"tool_args":"`'
                    )

                    yield self._parts_manager.handle_part(
                        vendor_part_id=f'{chunk.item.id}-call', part=replace(call_part, args=None)
                    )
                    maybe_event = self._parts_manager.handle_tool_call_delta(
                        vendor_part_id=f'{chunk.item.id}-call',
                        args=args_json_delta,
                    )
                    if maybe_event is not None:  # pragma: no branch
                        yield maybe_event
                elif isinstance(chunk.item, responses.response_output_item.McpListTools):
                    call_part, _ = _map_mcp_list_tools(chunk.item, self.provider_name)
                    yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-call', part=call_part)
                else:
                    warnings.warn(  # pragma: no cover
                        f'Handling of this item type is not yet implemented. Please report on our GitHub: {chunk}',
                        UserWarning,
                    )

            elif isinstance(chunk, responses.ResponseOutputItemDoneEvent):
                if isinstance(chunk.item, responses.ResponseReasoningItem):
                    if signature := chunk.item.encrypted_content:  # pragma: no branch
                        # Add the signature to the part corresponding to the first summary/raw CoT
                        for event in self._parts_manager.handle_thinking_delta(
                            vendor_part_id=chunk.item.id,
                            id=chunk.item.id,
                            signature=signature,
                            provider_name=self.provider_name,
                        ):
                            yield event
                elif isinstance(chunk.item, responses.ResponseCodeInterpreterToolCall):
                    _, return_part, file_parts = _map_code_interpreter_tool_call(chunk.item, self.provider_name)
                    for i, file_part in enumerate(file_parts):
                        yield self._parts_manager.handle_part(
                            vendor_part_id=f'{chunk.item.id}-file-{i}', part=file_part
                        )
                    yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-return', part=return_part)
                elif isinstance(chunk.item, responses.ResponseFunctionWebSearch):
                    call_part, return_part = _map_web_search_tool_call(chunk.item, self.provider_name)

                    maybe_event = self._parts_manager.handle_tool_call_delta(
                        vendor_part_id=f'{chunk.item.id}-call',
                        args=call_part.args,
                    )
                    if maybe_event is not None:  # pragma: no branch
                        yield maybe_event

                    yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-return', part=return_part)
                elif isinstance(chunk.item, responses.response_output_item.ImageGenerationCall):
                    _, return_part, file_part = _map_image_generation_tool_call(chunk.item, self.provider_name)
                    if file_part:  # pragma: no branch
                        yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-file', part=file_part)
                    yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-return', part=return_part)

                elif isinstance(chunk.item, responses.response_output_item.McpCall):
                    _, return_part = _map_mcp_call(chunk.item, self.provider_name)
                    yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-return', part=return_part)
                elif isinstance(chunk.item, responses.response_output_item.McpListTools):
                    _, return_part = _map_mcp_list_tools(chunk.item, self.provider_name)
                    yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item.id}-return', part=return_part)

            elif isinstance(chunk, responses.ResponseReasoningSummaryPartAddedEvent):
                # Use same vendor_part_id as raw CoT for first summary (index 0) so they merge into one ThinkingPart
                vendor_id = chunk.item_id if chunk.summary_index == 0 else f'{chunk.item_id}-{chunk.summary_index}'
                for event in self._parts_manager.handle_thinking_delta(
                    vendor_part_id=vendor_id,
                    content=chunk.part.text,
                    id=chunk.item_id,
                ):
                    yield event

            elif isinstance(chunk, responses.ResponseReasoningSummaryPartDoneEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseReasoningSummaryTextDoneEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseReasoningSummaryTextDeltaEvent):
                # Use same vendor_part_id as raw CoT for first summary (index 0) so they merge into one ThinkingPart
                vendor_id = chunk.item_id if chunk.summary_index == 0 else f'{chunk.item_id}-{chunk.summary_index}'
                for event in self._parts_manager.handle_thinking_delta(
                    vendor_part_id=vendor_id,
                    content=chunk.delta,
                    id=chunk.item_id,
                ):
                    yield event

            elif isinstance(chunk, responses.ResponseReasoningTextDeltaEvent):
                # Handle raw CoT from gpt-oss models using callback pattern
                for event in self._parts_manager.handle_thinking_delta(
                    vendor_part_id=chunk.item_id,
                    id=chunk.item_id,
                    provider_details=_make_raw_content_updater(chunk.delta, chunk.content_index),
                ):
                    yield event

            elif isinstance(chunk, responses.ResponseReasoningTextDoneEvent):
                pass  # content already accumulated via delta events

            elif isinstance(chunk, responses.ResponseOutputTextAnnotationAddedEvent):
                # TODO(Marcelo): We should support annotations in the future.
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseTextDeltaEvent):
                for event in self._parts_manager.handle_text_delta(
                    vendor_part_id=chunk.item_id, content=chunk.delta, id=chunk.item_id
                ):
                    yield event

            elif isinstance(chunk, responses.ResponseTextDoneEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseWebSearchCallInProgressEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseWebSearchCallSearchingEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseWebSearchCallCompletedEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseAudioDeltaEvent):  # pragma: lax no cover
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseCodeInterpreterCallCodeDeltaEvent):
                json_args_delta = to_json(chunk.delta).decode()[1:-1]  # Drop the surrounding `"`
                maybe_event = self._parts_manager.handle_tool_call_delta(
                    vendor_part_id=f'{chunk.item_id}-call',
                    args=json_args_delta,
                )
                if maybe_event is not None:  # pragma: no branch
                    yield maybe_event

            elif isinstance(chunk, responses.ResponseCodeInterpreterCallCodeDoneEvent):
                maybe_event = self._parts_manager.handle_tool_call_delta(
                    vendor_part_id=f'{chunk.item_id}-call',
                    args='"}',
                )
                if maybe_event is not None:  # pragma: no branch
                    yield maybe_event

            elif isinstance(chunk, responses.ResponseCodeInterpreterCallCompletedEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseCodeInterpreterCallInProgressEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseCodeInterpreterCallInterpretingEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseImageGenCallCompletedEvent):  # pragma: no cover
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseImageGenCallGeneratingEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseImageGenCallInProgressEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseImageGenCallPartialImageEvent):
                # Not present on the type, but present on the actual object.
                # See https://github.com/openai/openai-python/issues/2649
                output_format = getattr(chunk, 'output_format', 'png')
                file_part = FilePart(
                    content=BinaryImage(
                        data=base64.b64decode(chunk.partial_image_b64),
                        media_type=f'image/{output_format}',
                    ),
                    id=chunk.item_id,
                )
                yield self._parts_manager.handle_part(vendor_part_id=f'{chunk.item_id}-file', part=file_part)

            elif isinstance(chunk, responses.ResponseMcpCallArgumentsDoneEvent):
                maybe_event = self._parts_manager.handle_tool_call_delta(
                    vendor_part_id=f'{chunk.item_id}-call',
                    args='}',
                )
                if maybe_event is not None:  # pragma: no branch
                    yield maybe_event

            elif isinstance(chunk, responses.ResponseMcpCallArgumentsDeltaEvent):
                maybe_event = self._parts_manager.handle_tool_call_delta(
                    vendor_part_id=f'{chunk.item_id}-call',
                    args=chunk.delta,
                )
                if maybe_event is not None:  # pragma: no branch
                    yield maybe_event

            elif isinstance(chunk, responses.ResponseMcpListToolsInProgressEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseMcpListToolsCompletedEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseMcpListToolsFailedEvent):  # pragma: no cover
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseMcpCallInProgressEvent):
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseMcpCallFailedEvent):  # pragma: no cover
                pass  # there's nothing we need to do here

            elif isinstance(chunk, responses.ResponseMcpCallCompletedEvent):
                pass  # there's nothing we need to do here

            else:  # pragma: no cover
                warnings.warn(
                    f'Handling of this event type is not yet implemented. Please report on our GitHub: {chunk}',
                    UserWarning,
                )

    def _map_usage(self, response: responses.Response) -> usage.RequestUsage:
        return _map_usage(response, self._provider_name, self._provider_url, self.model_name)

    @property
    def model_name(self) -> OpenAIModelName:
        """Get the model name of the response."""
        return self._model_name

    @property
    def provider_name(self) -> str:
        """Get the provider name."""
        return self._provider_name

    @property
    def provider_url(self) -> str:
        """Get the provider base URL."""
        return self._provider_url

    @property
    def timestamp(self) -> datetime:
        """Get the timestamp of the response."""
        return self._timestamp

model_name property

model_name: OpenAIModelName

Get the model name of the response.

provider_name property

provider_name: str

Get the provider name.

provider_url property

provider_url: str

Get the provider base URL.

timestamp property

timestamp: datetime

Get the timestamp of the response.